6 research outputs found

    An Orientation Selective Neural Network and its Application to Cosmic Muon Identification

    Full text link
    We propose a novel method for identification of a linear pattern of pixels on a two-dimensional grid. Following principles employed by the visual cortex, we employ orientation selective neurons in a neural network which performs this task. The method is then applied to a sample of data collected with the ZEUS detector at HERA in order to identify cosmic muons which leave a linear pattern of signals in the segmented uranium-scintillator calorimeter. A two dimensional representation of the relevant part of the detector is used. The results compared with a visual scan point to a very satisfactory cosmic muon identification. The algorithm performs well in the presence of noise and pixels with limited efficiency. Given its architecture, this system becomes a good candidate for fast pattern recognition in parallel processing devices.Comment: 19 pages, 10 Postrcipt figure

    Optimal Ensemble Averaging of Neural Networks

    No full text
    Based on an observation about the different effect of ensemble averaging on the bias and variance portion of the prediction error, we discuss training methodologies for ensembles of networks. We demonstrate the effect of variance reduction and present a method of extrapolation to the limit of an infinite ensemble. A significant reduction of variance is obtained by averaging just over initial conditions of the neural networks, without varying architectures or training sets. The minimum of the ensemble prediction error is reached later than that of a single network. In the vicinity of the minimum, the ensemble prediction error appears to be flatter than that of the single network, thus simplifying optimal stopping decision. The results are demonstrated on the sunspots data, where the predictions are among the best obtained, and on the 1993 energy prediction competition data-set B. 1 Introduction In recent years, the use of artificial neural networks (NN) for time series prediction has g..
    corecore